top of page
Search

Enterprise Multi-Agent Architecture as Bounded Context

  • Writer: Mark Kendall
    Mark Kendall
  • 3 days ago
  • 3 min read



🧠 LEARN → TEACH → MASTER




Enterprise Multi-Agent Architecture as Bounded Contexts



We’re going to define three maturity contexts — not just skill levels, but architectural states.





1ļøāƒ£ LEARN




Bounded Context: ā€œAgent Experimentation Zoneā€



This is where most enterprises are right now.

[ User / Developer ]

Ā  Ā  Ā  Ā  ↓

[ Prompt App / Copilot ]

Ā  Ā  Ā  Ā  ↓

[ LLM API ]

Ā  Ā  Ā  Ā  ↓

[ Basic RAG (Vector DB) ]


Characteristics



  • Prompt-driven

  • Mostly stateless

  • Minimal orchestration

  • No strong governance

  • Single-agent mental model




Architectural Boundaries



  • LLM is external dependency

  • Vector DB is a plugin

  • Enterprise systems are loosely connected




Risk Profile



  • Shadow AI usage

  • Poor auditability

  • Prompt sprawl

  • No policy enforcement layer





This stage is about:


ā€œCan we do something useful with AI?ā€


Not:


ā€œCan we trust this in production?ā€





2ļøāƒ£ TEACH




Bounded Context: ā€œAgent Orchestration Domainā€



This is where architecture begins.


We introduce separation of concerns.

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  │ Ā  Control PlaneĀ  Ā  │

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  │  (Policy + Registry)│

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ↓

User / Event → Orchestrator → Agent Mesh

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ↓

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  │Planner │Executor│Reviewer│

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ↓

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Enterprise APIs


New Bounded Contexts Introduced




1ļøāƒ£ Orchestration Context



  • Task decomposition

  • Retry logic

  • State management

  • Compensation logic




2ļøāƒ£ Agent Capability Context


Each agent has:


  • Defined responsibility

  • Clear contract

  • Limited tool access




3ļøāƒ£ Governance Context



  • Policy as code

  • Role-based execution

  • Observability

  • Approval workflows





Now we’ve shifted from:


ā€œChat with AIā€


To:


ā€œAI participates in workflowsā€


This is where enterprises start seeing:


  • Real automation

  • Reduced human friction

  • Risk visibility






3ļøāƒ£ MASTER




Bounded Context: ā€œAgent Platform Ecosystemā€



This is where multi-agent becomes core product.


We formalize the system like an operating system.

Ā Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”

Ā Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  │  Ā  Ā  Agent ControlĀ  Ā  Ā  │

Ā Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  │  (Policy + Identity + Ā  │

Ā Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  │ Ā  Cost + Registry)Ā  Ā  Ā  │

Ā Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

Ā Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ↓

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  │  Multi-Agent RuntimeĀ  Ā  │

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  │  (Event-Driven Mesh)Ā  Ā  │

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

Ā Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ↓

Ā  Ā  Ā  Ā  Ā  ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¬ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”

Ā  Ā  Ā  Ā  Ā  │Domain AĀ  │Domain BĀ  │Domain CĀ  │Domain DĀ  │

Ā  Ā  Ā  Ā  Ā  │AgentsĀ  Ā  │AgentsĀ  Ā  │AgentsĀ  Ā  │AgentsĀ  Ā  │

Ā  Ā  Ā  Ā  Ā  ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”“ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

Ā Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ↓

Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Enterprise Data Fabric

Ā Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  ↓

Ā Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Ā  Observability + Audit





Mature Bounded Contexts




šŸ”· Agent Registry Context



  • Versioned agents

  • Approved capabilities

  • Cost metering




šŸ”· Identity & Trust Context



  • Agent ↔ Human binding

  • Action-level authorization

  • Zero-trust data access




šŸ”· Event Fabric Context



  • Kafka/EventBridge backbone

  • Event-triggered agent loops

  • Autonomous resolution flows




šŸ”· Knowledge Fabric Context



  • Vector stores

  • Canonical models

  • Structured + unstructured fusion

  • Partitioned memory




šŸ”· Observability Context



  • Full reasoning trace

  • Action log

  • Compliance audit





Now we’ve shifted from:


ā€œUsing AIā€


To:


ā€œRunning an Agent Operating Systemā€


That’s where OpenAI’s ā€œmulti-agent coreā€ comment lands.





šŸŽÆ How This Fits Learn → Teach → Master


Phase

Mental Model

Architecture Model

Learn

AI as tool

LLM + RAG

Teach

AI as participant

Orchestrated agents

Master

AI as platform

Agent ecosystem OS





šŸ”„ Why This Is Powerful For You



This reframes enterprise AI not as:


  • Prompt engineering

  • Model comparison

  • Vendor selection



But as:


  • Domain modeling

  • Bounded contexts

  • Platform architecture

  • Governance-first orchestration



This is solution architect territory.


Not hype territory.






Your move.

Ā 
Ā 
Ā 

Recent Posts

See All
Chapter 2

Chapter 2: From Experimentation to Industrialization This chapter provides the foundational technical guidance required for enterprise AI architects to transition from "proof-of-concept" thinking to p

Ā 
Ā 
Ā 

Comments

Rated 0 out of 5 stars.
No ratings yet

Add a rating
Post: Blog2_Post

Subscribe Form

Thanks for submitting!

©2020 by LearnTeachMaster DevOps. Proudly created with Wix.com

bottom of page